Conventional Breeding Creates Safer Foods Than Genetic Engineering: Fact or Assumption?

I am currently serving as Invited Lecturer at Jilin University (China), offering a college course entitled, Introduction to Genetically Engineered Crops: Risks and Benefits.  During this experience, it has dawned on me how commonly my students mistakenly believe that conventional breeding techniques creates foods that somehow are safer than those whose pedigree includes genetic engineering (GE).  During the course, I challenge them to understand that this is an assumption rather than established fact, and that this assumption can be challenged with scientific knowledge enumerated here.  (Note that this paragraph was edited post-publication for clarity.  Also, some of the text below was modified from my recent review paper [1]).

  1. Position statements of diverse, prestigious scientific organizations all support this conclusion [2-18].
  2. Scientific review papers supporting this position are readily found in the scholarly literature [19-26].
  3. As far as I can tell, when people express fears about food risks relating to GE, their predominant fear concerns recombinant DNA.  That being the case, it is noteworthy that recombinant DNA is a completely normal part of our diet.  Naturally produced recombinant DNA in our crops can result from diverse mechanisms, listed in my recent review paper [1].  In fact, all land plants are “natural GMOs,” as all contain genes acquired horizontally [27-43].  To my knowledge, there is no published, validated research showing any fundamental biochemical or biophysical difference between DNA recombined in a test tube vs. that recombined in a living cell.
  4. Compared to other breeding techniques, targeted DNA manipulations achieved during transgenesis, cisgenesis, intragenesis, or genome editing are no more disruptive—and are commonly less disruptive—to a plant’s genome, transcriptome, proteome, and composition than other methods of crop improvement [25, 26, 44-49].
  5. It seems logical to assume, since conventional breeding techniques can be centuries old, that the products derived from such must be safe.  However, every plant is a unique genetic and epigenetic creation.  Therefore, every new plant presents unknown risks as a result of its unique genetic and epigenetic heritage.
  6. Conventional breeding can produce plants with interactions of thousands of genes, which may create unintended outcomes and hazardous new products [3].

Scientists recognize that there is always the possibility of a GE plant that has some unintended, negative effect on a consuming animal or human.  However, the same risk applies to conventionally bred crops, for which harmful cases have been documented [50, 51].  Thus, what matters to food safety is not the process used to create a plant, but the properties of the resulting plant [11, 52-55].  In fact, instead of posing a routine food-safety risk, the reverse is true: GE traits can actually increase food safety as compared to conventional crops (see [56] and citations in [57]).

Comments are most welcome, but attempts to dispute my conclusion must include citations to relevant scholarly literature.

Literature Cited

  1. Vincelli, P., Genetic engineering and sustainable crop disease management: Opportunities for case-by-case decision-making. Sustainability, 2016, Vol. 8, p. 495, DOI: 10.3390/su8050495. Available from: http://www.mdpi.com/2071-1050/8/5/495/html
  2. American Medical Association. Genetically Modified Crops and Foods, Summaries and Recommendations of Council on Scientific Affairs Reports, 2000, AMA Interim Meeting. p. 18-19 Available from: http://www.ilsi.org/NorthAmerica/Documents/AMA_2000InterimMeeting.pdf
  3. The National Academies Press. Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects. Washington, D.C. 256 pp. Available from: http://nap.edu/10977 Accessed 28 Feb 2016.
  4. European Academies Science Advisory Council. Planting the future: opportunities and challenges for using crop genetic improvement technologies for sustainable agriculture. 978-3-8047-3181-3. Halle/Saale, Germany. Available from: http://www.easac.eu/fileadmin/Reports/Planting_the_Future/EASAC_Planting_the_Future_FULL_REPORT.pdf Accessed 28 Feb 2016.
  5. The Royal Society. Genetically modified plants for food use and human health—an update. Report Number 0 85403 576 1. 20 pp. Available from: https://royalsociety.org/~/media/royal_society_content/policy/publications/2002/9960.pdf Accessed 28 Feb 2016.
  6. The Royal Society. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. ISBN 978-0-85403-784-1. Available from: https://books.google.com/books?id=qpQLkgEACAAJ Accessed 28 Feb 2016.
  7. Hollingworth, R. M., Bjeldanes, L. F., Bolger, M., Kimber, I., Meade, B. J., Taylor, S. L. and Wallace, K. B., Society of Toxicology position paper: the safety of genetically modified foods produced through biotechnology. Toxicological Sciences, 2003, Vol. 71, p. 2-8. Available from: http://toxsci.oxfordjournals.org/content/71/1/2.full.pdf+html
  8. American Association for the Advancement of Science. Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods. Available from: http://www.aaas.org/sites/default/files/AAAS_GM_statement.pdf Accessed 28 Feb 2016.
  9. American Phytopathological Society Council. Compulsory Labeling of Plants and Plant Products Derived from Biotechnology. St. Paul, MN. Available from: http://www.apsnet.org/members/outreach/ppb/positionstatements/pages/biotechnologypositionstatement.aspx Accessed 28 Feb 2016.
  10. International Union of Nutritional Sciences. Statement on Benefits and Risks of Genetically Modified Foods for Human Health and Nutrition. Available from: http://www.iuns.org/statement-on-benefits-and-risks-of-genetically-modified-foods-for-human-health-and-nutrition/ Accessed 28 Feb 2016.
  11. American Medical Association. H-480.958 Bioengineered (Genetically Engineered) Crops and Foods. Available from: https://www.ama-assn.org/ssl3/ecomm/PolicyFinderForm.pl?site=www.ama-assn.org&uri=/resources/html/PolicyFinder/policyfiles/HnE/H-480.958.HTM Accessed 28 Feb 2016.
  12. Britsh Medical Association, Board of Science and Education. Genetically modified foods and health: a second interim statement. Available from: http://www.argenbio.org/adc/uploads/pdf/bma.pdf Accessed 28 Feb 2016.
  13. Bruhn, C., Earl, R. and American Dietetic, A., Position of the American Dietetic Association: Agricultural and food biotechnology. J Am Diet Assoc, 2006, Vol. 106, p. 285-93, DOI: 10.1016/j.jada.2005.12.017. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16442880
  14. Biochemical Society. Genetically Modified Crops, Feed and Food: A Biochemical Society Position Statement. Available from: http://www.biochemistry.org/Portals/0/SciencePolicy/Docs/GM%20Position%20Statement%202011%20Final.pdf Accessed 28 Feb 2016.
  15. American Society for Microbiology. Statement of the American Society for Microbiology on Genetically Modified Organisms. Available from: http://www.asm.org/index.php?option=com_content&view=article&id=3656&Itemid=341 Accessed 28 Feb 2016.
  16. Crop Science Society of America. Researchers and farmers utilize GM technology to address society’s growing global food production, security, and safety needs. Available from: https://www.crops.org/files/science-policy/issues/reports/cssa-gmo-statement.pdf Accessed 28 Feb 2016.
  17. Federation of Animal Science Societies (FASS). FASS Facts: On Biotech Crops – Impact on Meat, Milk and Eggs. Savoy, IL. Available from: http://www.fass.org/geneticcrops.pdf Accessed 28 Feb 2016.
  18. National Academies Press. Genetically Engineered Crops: Experiences and Prospects. ISBN 978-0-309-43738-7. Washington DC. 420. Available from: http://www.nap.edu/23395 Accessed 18 May 2016.
  19. Key, S., Ma, J. K. and Drake, P. M., Genetically modified plants and human health. J R Soc Med, 2008, Vol. 101, p. 290-8, DOI: 10.1258/jrsm.2008.070372. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18515776
  20. Nicolia, A., Manzo, A., Veronesi, F. and Rosellini, D., An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol, 2014, Vol. 34, p. 77-88, DOI: 10.3109/07388551.2013.823595. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24041244
  21. European Union Publications Office. A Decade of EU-Funded GMO Research (2001-2010). ISBN 978-92-79-16344-9. Luxembourg. Available from: https://ec.europa.eu/research/biosociety/pdf/a_decade_of_eu-funded_gmo_research.pdf Accessed 28 Feb 2016.
  22. Van Eenennaam, A. L. and Young, A. E., Prevalence and impacts of genetically engineered feedstuffs on livestock populations. J Anim Sci, 2014, Vol. 92, p. 4255-78, DOI: 10.2527/jas.2014-8124. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25184846
  23. Delaney, B., Safety assessment of foods from genetically modified crops in countries with developing economies. Food Chem Toxicol, 2015, Vol. 86, p. 132-143, DOI: 10.1016/j.fct.2015.10.001. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26456807
  24. Snell, C., Bernheim, A., Berge, J. B., Kuntz, M., Pascal, G., Paris, A. and Ricroch, A. E., Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem Toxicol, 2012, Vol. 50, p. 1134-48, DOI: 10.1016/j.fct.2011.11.048. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22155268
  25. Ricroch, A. E., Assessment of GE food safety using ‘-omics’ techniques and long-term animal feeding studies. N Biotechnol, 2013, Vol. 30, p. 349-54, DOI: 10.1016/j.nbt.2012.12.001. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23253614
  26. Herman, R. A. and Price, W. D., Unintended compositional changes in genetically modified (GM) crops: 20 years of research. J Agric Food Chem, 2013, Vol. 61, p. 11695-701, DOI: 10.1021/jf400135r. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23414177
  27. Tarrio, R., Ayala, F. J. and Rodriguez-Trelles, F., The Vein Patterning 1 (VEP1) gene family laterally spread through an ecological network. PLoS One, 2011, Vol. 6, p. e22279, DOI: 10.1371/journal.pone.0022279. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21818306
  28. Yang, Z., Zhou, Y., Huang, J., Hu, Y., Zhang, E., Xie, Z., Ma, S., Gao, Y., Song, S., Xu, C. and Liang, G., Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development. New Phytol, 2015, Vol. 206, p. 807-16, DOI: 10.1111/nph.13183. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25420550
  29. Emiliani, G., Fondi, M., Fani, R. and Gribaldo, S., A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biol Direct, 2009, Vol. 4, p. 7, DOI: 10.1186/1745-6150-4-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19220881
  30. Kyndt, T., Quispe, D., Zhai, H., Jarret, R., Ghislain, M., Liu, Q., Gheysen, G. and Kreuze, J. F., The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proc Natl Acad Sci U S A, 2015, Vol. 112, p. 5844-9, DOI: 10.1073/pnas.1419685112. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25902487
  31. Bock, R., The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci, 2010, Vol. 15, p. 11-22, DOI: 10.1016/j.tplants.2009.10.001. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19910236
  32. Wang, Q., Sun, H. and Huang, J., The evolution of land plants: a perspective from horizontal gene transfer. Acta Societatis Botanicorum Poloniae, 2014, Vol. 83, p. 363-368, DOI: 10.5586/asbp.2014.043. Available from: https://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.2014.043
  33. El Baidouri, M., Carpentier, M. C., Cooke, R., Gao, D., Lasserre, E., Llauro, C., Mirouze, M., Picault, N., Jackson, S. A. and Panaud, O., Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res, 2014, Vol. 24, p. 831-8, DOI: 10.1101/gr.164400.113. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24518071
  34. Fortune, P. M., Roulin, A. and Panaud, O., Horizontal transfer of transposable elements in plants. Communicative & Integrative Biology, 2008, Vol. 1, p. 74-77. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633806/
  35. Yue, J., Hu, X. and Huang, J., Horizontal gene transfer in the innovation and adaptation of land plants. Plant Signal Behav, 2013, Vol. 8, p. e24130, DOI: 10.4161/psb.24130. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23470724
  36. Bergthorsson, U., Richardson, A. O., Young, G. J., Goertzen, L. R. and Palmer, J. D., Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci U S A, 2004, Vol. 101, p. 17747-52, DOI: 10.1073/pnas.0408336102. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15598737
  37. Geering, A. D., Maumus, F., Copetti, D., Choisne, N., Zwickl, D. J., Zytnicki, M., McTaggart, A. R., Scalabrin, S., Vezzulli, S., Wing, R. A., Quesneville, H. and Teycheney, P. Y., Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nat Commun, 2014, Vol. 5, p. 5269, DOI: 10.1038/ncomms6269. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25381880
  38. Yang, Z., Wang, Y., Zhou, Y., Gao, Q., Zhang, E., Zhu, L., Hu, Y. and Xu, C., Evolution of land plant genes encoding L-Ala-D/L-Glu epimerases (AEEs) via horizontal gene transfer and positive selection. BMC Plant Biol, 2013, Vol. 13, p. 34, DOI: 10.1186/1471-2229-13-34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23452519
  39. Matveeva, T. V. and Lutova, L. A., Horizontal gene transfer from Agrobacterium to plants. Front Plant Sci, 2014, Vol. 5, p. 326, DOI: 10.3389/fpls.2014.00326. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25157257
  40. Huang, J. and Yue, J., Horizontal gene transfer in the evolution of photosynthetic eukaryotes. Journal of Systematics and Evolution, 2013, Vol. 51, p. 13-29, DOI: 10.1111/j.1759-6831.2012.00237.x. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19271204
  41. Diao, X., Freeling, M. and Lisch, D., Horizontal transfer of a plant transposon. PLoS Biology, 2006, Vol. 4, p. e5. Available
  42. Stegemann, S., Keuthe, M., Greiner, S. and Bock, R., Horizontal transfer of chloroplast genomes between plant species. PNAS, 2012, Vol. 109, p. 2434–2438, DOI: 10.1073/pnas.1114076109. Available from: http://www.pnas.org/content/109/7/2434.abstract
  43. Markova, D. N. and Mason-Gamer, R. J., The role of vertical and horizontal transfer in the evolutionary dynamics of PIF-like transposable elements in Triticeae. PLoS One, 2015, Vol. 10, p. e0137648, DOI: 10.1371/journal.pone.0137648. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26355747
  44. Schnell, J., Steele, M., Bean, J., Neuspiel, M., Girard, C., Dormann, N., Pearson, C., Savoie, A., Bourbonniere, L. and Macdonald, P., A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res, 2015, Vol. 24, p. 1-17, DOI: 10.1007/s11248-014-9843-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25344849
  45. Gao, L., Cao, Y., Xia, Z., Jiang, G., Liu, G., Zhang, W. and Zhai, W., Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21. BMC Genomics, 2013, Vol. 14, p. 738, DOI: 10.1186/1471-2164-14-738. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24165682
  46. Batista, R., Saibo, N., Lourenco, T. and Oliveira, M. M., Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci U S A, 2008, Vol. 105, p. 3640-5, DOI: 10.1073/pnas.0707881105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18303117
  47. Lehesranta, S. J., Davies, H. V., Shepherd, L. V., Nunan, N., McNicol, J. W., Auriola, S., Koistinen, K. M., Suomalainen, S., Kokko, H. I. and Karenlampi, S. O., Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol, 2005, Vol. 138, p. 1690-9, DOI: 10.1104/pp.105.060152. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15951487
  48. Ladics, G. S., Bartholomaeus, A., Bregitzer, P., Doerrer, N. G., Gray, A., Holzhauser, T., Jordan, M., Keese, P., Kok, E., Macdonald, P., Parrott, W., Privalle, L., Raybould, A., Rhee, S. Y., Rice, E., Romeis, J., Vaughn, J., Wal, J. M. and Glenn, K., Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res, 2015, Vol. 24, p. 587-603, DOI: 10.1007/s11248-015-9867-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25716164
  49. El Ouakfaoui, S. and Miki, B., The stability of the Arabidopsis transcriptome in transgenic plants expressing the marker genes nptII and uidA. Plant J, 2005, Vol. 41, p. 791-800, DOI: 10.1111/j.1365-313X.2005.02350.x. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15743445
  50. Koerth-Baker, M., How the ‘Poison Potato’ impacted the GMO debate. 2013 [30 May 2016]; Available from: https://www.geneticliteracyproject.org/2013/10/04/potato-chips-dangerously-delicious/.
  51. Finkelstein, E., Afek, U., Gross, E., Aharoni, N., Rosenberg, L. and Halevy, S., An outbreak of phytophotodermatitis due to celery. International Journal of Dermatology, 1994, Vol. 33, p. 116-118. Available
  52. National Research Council, Committee on Genetically Modified Pest-Protected Plants. Genetically Modified Pest-Protected Plants, Science and Regulation. ISBN 0-309-50467-8. Washington, D.C. . 292 pp. Available from: http://www.nap.edu/catalog/9795/genetically-modified-pest-protected-plants-science-and-regulation Accessed 28 Feb 2016.
  53. Hartung, F. and Schiemann, J., Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J, 2014, Vol. 78, p. 742-52, DOI: 10.1111/tpj.12413. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24330272
  54. Kolseth, A.-K., D’Hertefeldt, T., Emmerich, M., Forabosco, F., Marklund, S., Cheeke, T. E., Hallin, S. and Weih, M., Influence of genetically modified organisms on agro-ecosystem processes. Agriculture, Ecosystems & Environment, 2015, Vol. 214, p. 96-106, DOI: 10.1016/j.agee.2015.08.021. Available from: http://www.sciencedirect.com/science/article/pii/S0167880915300657
  55. Conko, G., Kershen, D. L., Miller, H. and Parrott, W. A., A risk-based approach to the regulation of genetically engineered organisms. Nature Biotechnology, 2016, Vol. 34, p. 493-503, DOI: 10.1038/nbt.3568. Available from: http://www.nature.com/nbt/journal/v34/n5/full/nbt.3568.html
  56. Diaz-Gomez, J., Marin, S., Capell, T., Sanchis, V. and Ramos, A. J., The impact of Bacillus thuringiensis technology on the occurrence of fumonisins and other mycotoxins in maize. World Mycotoxin Journal, 2015, p. 1-12, DOI: 10.3920/WMJ2015.1960. Available from: http://www.wageningenacademic.com/doi/abs/10.3920/WMJ2015.1960
  57. Vincelli, P., GMOs and Corn Mycotoxins. Grain Crops Update 2013 [Accessed 28 Feb 2016]; Available from: http://graincrops.blogspot.com/2013/08/gmos-and-corn-mycotoxins.html.

 

Advertisements

3 thoughts on “Conventional Breeding Creates Safer Foods Than Genetic Engineering: Fact or Assumption?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s